From SOL to NoSOL

Derick Rethans

derick@10gen.com— @derickr
http://joind.in/10557

The Relational Model

Edgar Codd in 1969

. Row

. Column

. lable

. View (Result)

The Relational Model

Normalisation

« INF: A relation is in first normal form iIf the domain
of each

. 2NF: No non-prime attribute in the table is

. 3NF: Every non-prime attribute is non-transitively

First Normal Form

A relation is in first normal form if the domain of each
attribute contains only atomic values, and the value of

each attribute contains only a single value from that
domain.

Customer ID | First Name | Surname | Telephone Number

Robert Ingram 555-861-2025
456 Jane Wright 555-403-1659, 555-776-4100
789 Maria Fernandez 555-808-9633

Second Normal Form

No non-prime attribute in the table is functionally
dependent on a proper subset of any candidate key

Brown Light Cleaning /3 Industrial Way
Brown Typing 73 Industrial Way
Harrison Light Cleaning 73 Industrial Way
Jones Shorthand 114 Main Street
Jones Typing 114 Main Street
Jones Whittling 114 Main Street

Third Normal Form

Every non-prime attribute is non-transitively dependent
on every candidate key in the table. The attributes that

do not contribute to the description of the primary key
are removed from the table. In other words, no
transitive dependency is allowed.

Winner Date of Birth

Indiana Invitational |1998| Al Fredrickson 21 July 1975
Cleveland Open 1999| Bob Albertson 28 September 1968
Des Moines Masters |1999| Al Fredrickson 21 July 1975
Indiana Invitational |1999| Chip Masterson 14 March 1977

NoSOL

o

Cassandra

@ riak
g SN

(L A

fmazon DynamoDB
.

Key/value Column

?® Neoyj

@ the graph database

SONeEs

Graph

L -
A
CouchDB

relax

. mongoDbB
8
{um)

Document

NoSOL: Key/Value

Example implementations:
. Memcache
. Redis

Data model:

{ "derick-twitter": "derickr" }

{ "derick-email": "derick@derickrethans.nl" }

{ "jeremy-twitter": "jmikola" }

{ "derick-sites": ["http://derickrethans.nl", "http://xdebug.org"] }

NoSOL: Column

Example implementations:

« (assandra

. HBase/Hadoop

Data model:

{ twitter: [{ "derick" : "derickr" }, { "jeremy" : "jmikola }] }
{ email: [{ "derick" : "derick@derickrethans.nl" }] }

{ sites: [{ "derick" : ["http://derickrethans.nl", "http://xdebug.org"] }] }

NoSOL: Graph

Example implementations:

. Neo4j

Data model:

["derick", "follows", "jeremy"]

["jeremy", "follows", "derick"]

["derick", "follows", "Queen UK"]

["derick", "twitters with", "derickr"]
["jeremy", "twitters with", "jmikola"]

NoSOL: Document

Example implementations:
. CouchDB

. MongoDB

Data model:

{

_id: "derick",

twitter: "derickr",

email: "derick@derickrethans.nl",

sites: ["http://derickrethans.nl", "http://xdebug.org"]
}
{

~id: "jeremy",
twitter: "jmikola",

ACID

Jim Grey in the late 1970s
. Atomicity
. Consistency
. Isolation

. Durability

CREATE TABLE acidtest (A INTEGER, B INTEGER CHECK (A + B = 100));

CAP

Eric Brewer in 2002

. Consistency:
A read sees all previously completed writes
(Not the same consitency as in ACID)

. Availability:
Guarantees that every request receives a response
about whether it was successful or failed

. Partition Tolerance:
Guaranteed properties are maintained even when
network failures prevent some machines from
communicating with others.

Database landscape

>

Q ® --lll.

’E-:J memcached s

o~ key/value oy

=

L_ L]

O MongoDB

Y ®

- '.

) e

- .

J "..

o

o Rﬂ?MS
— N

L) *
© te,
© &
@)

Vp)

depth of functionality

Terminology

. Document: the data (row)
. Collection: contains documents (table, view)
. Index

. Embedded Document (~join)

Documents

. Can have embedded documents
. Have a unique ID (the id field)

. Are schemaless

Document with embedded documents:

{
" 19" : "“derickr",
"name" : "Derick Rethans",
"talks" : |
{ "title" : "Profiling PHP Applications",

"url" : "http://derickrethans.nl/talks/profiling-phptour.pdf",

!
{ "title" : "Xdebug",

"url" : "http://derickrethans.nl/talks/xdebug-phpbcnll.pdf",
}

MongoDB and the First Normal Form

Custnmer ID | First Name | Surname | Telephone Number
Robert Ingram 861-2025
456 Jane Wright 403-1659, 776-4100
789 Maria Fernandez 808-9633
{
"Customer ID": 123,
"First Name": "Robert",
"Surname”: "Ingram”,
"Telephone Number": '861-2025'
}
{
"Customer ID": 456,
"First Name": "Jane",
"Surname": "Wright",
"Telephone Number": ['403-1659', '776-4100']
}
{
"Customer ID": 789,
"First Name": "Maria",
"Surname": "Fermandez",

"Telephone Number": ['808-9633']

MongoDB and the Second Normal Form

Employee | Skil | Current Work Location
Brown Light Cleaning /3 Industrial Way
Brown Typing /3 Industrial Way

Harrison Light Cleaning 73 Industrial Way
Jones Shorthand 114 Main Street
Jones Typing 114 Main Street
Jones Whittling 114 Main Street

{
"Employee": "Brown",
"Skill": ["Light Cleaning", "Typing"],
"Current Work Location": "73 Industrial Way",
}
{
"Employee": "Harrison",
"Skill": ["Light Cleaning"],
"Current Work Location": "73 Industrial Way",
}
{
"Employee": "Jones",
"Skill": ["Shorthand", "Typing", "Whittling"],
"Current Work Location": "114 Main Street",

MongoDB and the Third Normal Form

Indiana Invitational 1998 | Al Fredrickson 21 July 1975
Cleveland Open 1999 | Bob Albertson 28 September 1968
Des Moines Masters [1999| Al Fredrickson 21 July 1975
Indiana Invitational 1999 | Chip Masterson 14 March 1977
{ "Tournament": "Indiana Invitational",

"Winners": [
{ "Year": 1998, "Winner": "Al Fredrickson", "Date of Birth": "21 July 1975" },
{ "Year": 1999, "Winner": "Chip Masterson", "Date of Birth": "14 March 1977" },
]

}
{ "Tournament": "Cleveland Open",
"Winners": [
{ "Year": 1999, "Winner": "Bob Albertson", "Date of Birth": "28 September 1968" },
]
}
{ "Tournament": "Des Moines Masters",

"Winners": [
{ "Year": 1999, "Winner": "Al Fredrickson", "Date of Birth": "21 July 1975" },

]
}

Inserting data

db.steps.insert({
person: "derickr",

steps made: {
"20140201": 10800,
}

I 5

No schema, and you also don't have to create a
database or collection

Updating data

$m->demo->steps->update(
['person' => "derickr" 1],
['$inc' => ["steps made.20140202" => 712]],
['upsert' => true]

i

Record after update:

{
person: "derickr",
steps made: {
"20140201": 10800,
"20140202": 712,
}
}

. Atomic per-document only

. No transactions

. Can't use other field names in updates

Atomicity (ACID): Update operators

Do this instead:

new MongoClient;

¢m->demo->steps;

$c->update(

['person' => 'derickr'],

['$inc' => ["steps made.20140202" => 7124]]

A
=
i

-

Other operators:

$c->update(
['person' => 'derickr'],

['$addTﬂ5Et' = ['tagsl == 'GpEHStFEEtmaP I]]
) ;

$c->update
['person' => 'derickr'],
["$push’' => ['tags' => |
'$each' => ['mongodb', 'xdebug'],
'$slice' => -2
il
B

Consistency (ACID): Schemas

. Thereis no schema
. Thereis no schema validation

. Hence, no ACID consistency

NoSOL does not mean: No Schema

. Do not use values as key names

. Split it up instead:

o {

person: "derickr",
date: "20140201",
steps: 10800,

}

{
person: "derickr",
date: "20140202",
steps: 5906,

}

. Make sure you can always document your key names

Embedding Comments and Views

{

name: "Derick's MongoDB Tour Wrap-up",
date: "2012-10-01",
comments: [

{ name: "Adam", text: "It was great having you in Sou..." },
{ name: "Jake", text: "I don't think you can ever re..." },
1k
views: [

{ time: 1350297458, ip: "192.168.42.101" },
{ time: 1350297729, ip: "192.168.42.103" },
{ time: 1358298912, ip: "192.168.42.102" },

]
}
{

name: "What is PHP doing?",
date: "2012-07-13",
comments: [
{ name: "Chris", text: "The .gdbinit trick was somethi..." },
1,
views: |
{ time: 1350297458, ip: "192.168.42.101" },
]
}

Linking Articles and Views

Article collection:

{ id: 4,
name: "Derick's MongoDB Tour Wrap-up",
date: "2012-10-01",
comments: [

{ name: "Adam", text: "It was great having you in Sou..." },
{ name: "Jake", text: "I don't think you can ever re..." },
1,
}
{ i0: 7,
name: "What is PHP doing?",
date: "2012-07-13",
comments: [
{ name: "Chris", text: "The .gdbinit trick was somethi..." },
]
}

Views collection:

{ article id: 4, time: 1350297458, ip: "192.168.42.101" },
{ article id: 4, time: 1350298912, ip: "192.168.42.102" },
{ article id: 7, time: 1350297458, ip: "192.168.42.101" },

Embedding versus Linking

Embedding

. Simple data structure

. How often do you update?

. Will the document grow and grow?
Linking

. More complex data structure

. Unlimited data size

. More, smaller documents

Consistency (CAP) and Durability (ACID):
WriteConcerns

Consistency-level can be picked per-query:

$m = new MongoClient;
$c = $m->workout->steps;
$c->insert(|
'person' => ‘'derickr’,
'steps made' => [
'20140201"' => 10800
1,

['w' = 1]
)3

But also with defaults:

$m = new MongoClient("mongodb://localhost/?w=majority");

Consistency (CAP) and Durability (ACID):

WriteConcerns

_ A write will not be followed up with a GLE
L Unacknowledged call, and therefore not checked

_ The write will be acknowledged by the
w=1 Acknowledged (primary) server)

: The write will be acknowledged by the
=N Askiﬂﬁ?egeé . primary server, and replicated to N-1
J secondaries.

The write will be acknowledged by the
=maiori Majority majority of the replica set (including the
gty Acknowledged primary). This is a special reserved

string.
w={tagset} Replica Set Tag Set The write will be acknowledged by
el Acknowledged members of the entire tag set
> The write will be acknowledged by
I=te Journaled primary and the journal flushed to disk

Availability/Partition Tolerance (CAP)

Different methods
. Master-slave replication
. Master-slave replication with Failover

. Multi-master replication
. Sharding

MongoDB Replicaset features

. A cluster of N servers

. All writes to primary

. Reads can be from primary (default) or a secondary
. Any (one) node can be primary

. Consensus election of primary

. Automatic failover

. Automatic recovery

How MongoDB replication works

-

Member 1

. Set Is made up of 2 or more nodes

. It makes most sense to have an odd number of nodes

<

Member 3

Member 2

~

4

How MongoDB replication works

2) 4)
Member 1 Member 2
% P4 . ,
- N\
Member 3
PRIMARY
& 4

. Election establishes the PRIMARY
. Data replication from PRIMARY to SECONDARY

How MongoDB replication works

. Automatic recovery

Member 2

PRIMARY

~

4

F
F
F
'
J r

il I i
Member 1 -
% P4 .
; N
Member 3
RECOVERING
- 4

Eventual consistency

. Read Preference / Slave Okay

. driver will always send writes to Primary

. driver will send read requests to Secondaries

. Warning!
. Secondaries may be out of date

. Not applicable for all applications

Wrapping up

In NoSQL:
. No real schema design "theory”
. Schema design depends on data access paterns

. ACID vs. CAP

. Traditional relational database features are replaced
by features for scalability

EI

1|-".r#
E l'E T .':'

I.l |

http://joind.in/10557/
derick@10gen.com—@derickr

