Scaling MongoDB

Derick Rethans

derick@mongodb.com—@derickr
https://joind.in/20481

Database landscape

>

q) @rrnnnnnnrrrann,,,,

g memcached e

G | key/value e,

-

o MongoDB

T .

) .

o] "

J '-‘

_4? RD._EMS
O

© ‘e,
© L
A |

v)

depth of functionality

@derickr

9 Neoai B
. the graph]database ‘
Cassandra

Couchlrglg
" o J mongoDB
redils O DR
D <OrientDB

. amazon
(fxmazon DynameDB
e

o

Key/value Column Graph Document

@derickr

CAP

Eric Brewer In 2002

. Consistency:
A read sees all previously completed writes
(Not the same consistency as in ACID)

. Avallability:
Guarantees that every request receives a
response about whether it was successful or failed

. Partition Tolerance:
Guaranteed properties are maintained even when
network failures prevent some machines from
communicating with others.

@derickr

New architecture
:

% PHP Library
= | (Composer: mongodb/mongodb)

PHP 7.x Driver HHVM Driver
(Extension: mongodb) (Extension: mongodb)

N

PHP 5.x Driver

(Extension: mongodb)

(B

C driver BSON library
(libmongoc) (libbson)

———————————

@derickr

Terminology

. Document: the data (row)
. Collection: contains documents (table, view)

. Index

. Embedded Document (~join)
. Sharding (partitioning)

@derickr

Documents: Complex

{
" 1d" : "derick@localhost",
"fullname" : "Derick Rethans",
"slug" : "derick-rethans",
"created at" : 1452546141,
"timezone" : "Europe/London",
"confirmed" : true,

"confirmed at" : 1452546148,
"location" : "London, UK",

"words" : ["derick", "rethans", "london", "uk" 1],
"count" : 16,

"count _unique" : 13,

"badges" : [

{ n: "uniquel"”, 1: 1 },
{ n: "age2l1l", 1: 3 }
]

"1sAdmin" : true
}

. _id: does not have to be an Object ID

. Values can be arrays, documents, or arrays of
documents

@derickr

Replication

Replication
Use cases

. High Avalilablility (auto-failover)

. Backups

. Online, Delayed Copy (fat finger)
. Point In Time (PIT) backups

. Use (hidden) replica for secondary workload
. Analytics

. Data-processing

. Integration with external systems (f.e. ElasticSearch)

@derickr

Types of outages

Planned

. Hardware upgrade

. Relocation of data to new file-system / storage
. Software upgrade

Unplanned

. Hardware failure

. Data center fallure

. Region outage

. Human error

@derickr

MongoDB Replica Set Features

. A cluster of N servers
. All writes to primary

. Reads can be from primary (default) or a
secondary

. Any (one) node can be primary
. Consensus election of primary
. Automatic failover and recovery

@derickr

How MongoDB replication works

p

Member 1

N

. A set should have 3 or more nodes, and always an
odd number of voters (for calculating majority)

N 4

| Member 3 |

Member 2

~

G

@derickr

How MongoDB replication works

4 N (- N\

Member 1 Member 2

N G

N/

Member 3
PRIMARY

. Election establishes the PRIMARY

. Data replication from PRIMARY to SECONDARY

@derickr

How MongoDB replication works

/ A negotiate /- .\

new master
Member 1 - > Member 2

. PRIMARY may fail

. Automatic election of new PRIMARY If majority
exIsts

@derickr

How MongoDB replication works

4 N\ -)
Member 2
Member 1 -
PRIMARY
-~ -~
4 N
Member 3
DOWN
Y 4

. New PRIMARY elected
. Replica set re-established

@derickr

How MongoDB replication works

4 N\ 4 N\
Member 2
Member 1 <
PRIMARY
\ 4 4
a)
Member 3
RECOVERING
. Y,

. Automatic recovery

@derickr

How MongoDB replication works

p

Member 1

N

N ("
<

Y

| Member 3 |

. Replica set re-established

Member 2

PRIMARY

~

G

@derickr

How does replication work?

. Change operations are written to the oplog

. A single update/delete affecting multiple documents can
result in many oplog entries

. The oplog Is a capped collection (fixed size)

. Must have enough space to allow new secondaries to catch up after
syncing from a primary, and cope with any applicable slaveDelay

. Secondaries query the primary's oplog and apply
what they find

. All replica set members contain an oplog

@derickr

Connection String

<?php
$options = ['replicaSet' => 'seta'];

$m = new \MongoDB\Client('mongodb://localhost:13000/7replicaSet=seta');

$m = new \MongoDB\Client('mongodb://localhost:13000, localhost:13001', $options);

$m = new \MongoDB\Client('mongodb://user:password@localhost:13000/demo', $options);

7>

. Add more than one host for seeding (a majority)
. Don't add the arbiters to the connection string

@derickr

I'S

I'S.

I'S.

I'S

I'S

I'S

Managing a replica set

.conf(): get current configuration
initiate(cfg): Initiate replica set
reconfig(cfg): reconfigure a replica set
.add("hostname:port"): add a new member
.addArb("hostname:port"): add a new arbiter

.remove ("hostname:port"): remove a member

@derickr

Priorities

@derickr

Priorities

. Priority, floating point number between 0 and 100

. Used during an election:

. Most up to date
. Highest priority
. Less than 10s behind failed Primary

. Allows weighting of members during failover

@derickr

Priorities

. Members A or B will be chosen first
. Highest priority

. Members C or D will be chosen when:

. A and B are unavailable, or not up to date

. Member E IS never chosen

. priority: 0 means it cannot be elected

@derickr

Write concerns

<?php
$manager = new MongoDB\Driver\Manager('mongodb://localhost:27017"');

$bulk = new MongoDB\Driver\BulkWrite();
$bulk->insert([' id' => 1, 'x' => 1]);

$result = $manager->executeBulkWrite(‘db.collection', $bulk, $wc);

. TWO nodes:

$wCc = new MongoDB\Driver\WriteConcern(2);

. Majority of nodes:

$wc = new MongoDB\Driver\WriteConcern(MongoDB\Driver\WriteConcern::MAJORITY);

. With timeout:

$wc = new MongoDB\Driver\WriteConcern(
MongoDB\Driver\WriteConcern: :MAJORITY, 10000
)i

@derickr

Read preferences

Select between candidate servers from a specific set
. primary (default)

. primary preferred (RP_PRIMARY_ PREFERRED)

. Secondary
. secondary preferred
. nNearest

. Only the candidates within 15ms ping time from
the fastest are used

. Random (per-query) among the matched sets

@derickr

Read preferences

<?php

$m = new \Mongo\Driver\Manager (
'mongodb://localhost:13000/7?replicaSet=poiset’
'&readPreference=nearest&readPreferencelags=dc:asia’

15

$m->executeQuery('demo.test', $query);
7>

or per-query:

<?php

$m = new \Mongo\Driver\Manager (
'mongodb://localhost:13000/?replicaSet=poiset’

i

$rp = new MongoDB\Driver\ReadPreference(
MongoDB\Driver\ReadPreference: :RP_NEAREST, [['dc' => 'asia']]
i

$m->executeQuery('demo.test', $query, $rp);
>

@derickr

Eventual consistency

. Read Preferences (except RP_PRIMARY)

. Driver will always send writes to primary
. Driver will send read requests to secondaries

. Options to prefer primary, secondary, or nearest

. Warning!
. Secondaries may be out of date

. Not appropriate for all applications

@derickr

Replica Set Wrap-up

Reads from Primary are always consistent

Reads from Secondaries are eventually consistent
Automatic failover If a Primary falls

. Automatic recovery when a node joins the set

Full control of where writes occur

Full control of where reads occur

@derickr

High Availability Scenarios

@derickr

A single node

. Will have downtime

. Human intervention required if node crashes

@derickr

Replica Set (single dc)

. Single datacentre

. Single switch and power

. One node fallure

. Automatic recovery of single node crash
. Points of failure:

. Power
. Network

. Datacentre
@derickr

Replica Set (multiple zones, with arbiter)

Single datacentre
Multiple power/network zones
Automatic recovery of single node crash

w=majority Not viable as no writes with losing a
node

Points of failure:

. Datacentre

. WO node failure

@derickr

Replica Set (multiple zones)

. Single datacentre

. Multiple power/network zones

. Automatic recovery of single node crash

. w=majority viable as 2 out of 3 nodes available

. Points of failure:

. Datacentre

. WO node failure

@derickr

Replica Set 4

. Multl datacentre

. DR node for safety

. Can't do multi datacentre durable write safely since
only one node In distant datacentre

@derickr

Replica Set (fully redundant)

. Three datacentres

. Can survive full datacentre loss

. Candow = { dc : 2 }to guarantee write in two
DCs

@derickr

Typical deployments

Set Data High
size | protection Avallablllty

Must use --journal to protect
against crashes

On loss of one member, set

d & LLs 9 becomes read-only
On loss of one member, two
4 3 Yes Yes - 1 faillure surviving nodes can elect new
primary
4 Yes Yes - 1 failure On I.OSS of two members, two
surviving nodes are read-only
Yes - 2 On Ic_>s_s of two members, three
4 S Yes : surviving nodes can elect new
fallures

primary

@derickr

1970 - 2000: Vertical Scalability (scale up)

@derickr

- WEE.-

Google, ~2000: Horizontal Scalability (scale out)

@derickr

Data Store Scalability in 2005

. Custom Hardware

. Oracle

. Custom Software

. Facebook + MySQL

@derickr

Data Store Scalability Today

. MongoDB auto-sharding available
. A data store that IS

. Free and publicly avallable
. Open source (https://github.com/mongodb/mongo)
. Horizontally scalable

. Application independent

@derickr

Indexes Working Set

JUTIN AR RN VR g Ml Y JN 1Y TN R .

Indexes Working Set

o LR

Indexes Working Set

o SO ATy ! Y I | t | RN

Working Set Exceeds Physical Memory

@derickr

Read/Write Throughput Exceeds I/O

@derickr

MongoDB's
approach
to sharding

Partition data based on ranges

. User defines shard key

. Shard key defines range of data
. Key space Is like points on a line
. Range Is a segment of that line

Key Space

@derickr

Distribute data in chunks across nodes

. Initially one chunk
. Default max chunk size: 64mb

. MongoDB automatically splits & migrates chunks
when max reached

@derickr

MongoDB manages data

. Queries routed to specific CP é

shards
. MongoDB balances cluster

. MongoDB migrates data to
new nodes

@derickr

MongoDB Auto-Sharding

. Minimal effort required

. Same Interface as single mongod

. Two steps

. Enable sharding for a database

. Shard collection(s) within database

@derickr

Architecture

Data stored In a shard

. Shard Is a node of the cluster
. Shard can be a single mongod or a replica set

@derickr

Config server stores meta data

. Config server

. Stores cluster chunk ranges and locations
. A Replica Set

. No arbiters or delayed members

@derickr

MongoS manages the data

Mongos

. Acts as a router / balancer
. No local data (persists to config database)

. Can have one or many (e.g. each application server)

‘.

App Server |l App Server

$ $ or

't

@derickr

App Server |l App Server

! !

Sharding Infrastructure

@derickr

Shard Key

Shard Key

. Shard key Is iImmutable
. Shard key values are immutable
. Shard key requires index on fields contained in key

. Uniqueness of _id field Is only guaranteed within
Individual shard

. Shard key limited to 512 bytes In size

@derickr

Shard Key Considerations

. Cardinality

. Write distribution
. Query Isolation

. Data Distribution

@derickr

Example: emalil storage

{
_1d: ObjectId("51156all1056d6T966T268f7f"),
user: 3/113,
time: ISODate('2013-04-24 10:38:05 '),
subject: "This 1s a test",
recipients: ["derick@l®gen.com", "derick@example.com"],
body: "
}

. Lots of emaills per user

. Most common query: get user emails sorted by
time

. Indexon { id: 1 }, { user: 1, time: -1 },
and { recipients: 1 }

@derickr

Example: emalil storage
______|cardinality|write scaling| _Query isolation _lindex Locality

B Doc level 1shard All shards, merge sort Great
Hash level All shards All shards, merge sort Poor
BT Many docs All shards One shard, index sort S0-S0
BE Ry Doc level Allshards One shard, index sort Good

_1d: ObjectId("51156all1056d6T966T268f7T"),
user: 37113,

time: ISODate('2013-04-24 10:38:05 '),
subject: "This 1s a test",

recipients: ["derick@lOgen.com", "derick@example.com"],
dey: II...II

@derickr

Connection String

<?php
¢m = new \MongoDB\Client('mongodb://localhost:27019');

$m = new \MongoDB\Client('mongodb://localhost:27019,example.com:27019');

$m = new \MongoDB\Client('mongodb://user:password@localhost:27019/demo', %$options);
$m = new \MongoDB\Client('mongodb:///tmp/mysocket.sock');
7>

. Remember: mongos may be run on the app server
. Add multiple hosts for redundancy

@derickr

Mechanics

Partitioning

. Remember: it's based on ranges

Key Space

@derickr

minKey maxKey

{x: -20} ix: 13} {x: 25} {x: 100,000}

\ 4 . 4
—)

minKey 64MB maxKey

Chunk Is a section of an entire range

@derickr

Chunk splitting

A chunk is split once It exceeds the maximum size

There Is no split point if all documents have the
same shard key

Chunk split is a logical operation (no data Is
moved)

If splitting creates too large a difference in chunks
across the cluster, a balancing round starts

@derickr

Balancing

/I\

. Balancer Is running on mongos

. Once the difference in chunks between the most
dense shard and the least dense shard Is above
the migration threshold, a balancing round starts

@derickr

Balancing tips

Run the balancer during low traffic periods:

use config;

db.settings.update(
{ _1d: 'balancer' },
{ $set: { activeWindow: { start: "23:00", stop: "4:00" } } }

Can be triggered manually using moveChunk

Pre-creating ranges for heavy insertion loads can
avold over-populating a single shard

Feel free to write your own smairt balancer!

@derickr

Cluster Request Routing

. Targeted Queries
. Scatter / Gather Queries
. Scatter / Gather Queries with Sort

@derickr

- -

Cluster Request Routing: Targeted Query

@derickr

7

- -
|Hiiil ‘IiHiIl |HHHHI

Routable request received

@derickr

7
£

- -
|Hiiil ‘IHHHII |HHHHI

Request routed to appropriate shard

@derickr

7
e

- -
|HHHHI ‘IiHiIl |Hiiil

Shard returns results

@derickr

T

- -
|Hiiil ‘IiHiIl |HHHHI

Mongos returns results to client

@derickr

- - -

Cluster Request Routing: Scatter / Gather Query

@derickr

7
£

- -
|Hiiil ‘IHHHII |HHHHI

Scatter / Gather Request Received

@derickr

Request sent to all shards

@derickr

7

e

Shards return results to mongos

@derickr

T

e

Mongos returns results to client

@derickr

- - -

Cluster Request Routing: Scatter / Gather Query with
Sort

@derickr

- - -
|Hiii| ||HHH|| |Hiiil

Scatter / Gather Request with Sort Recelved

@derickr

